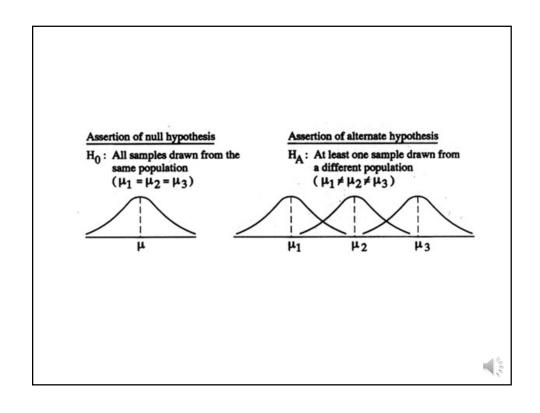
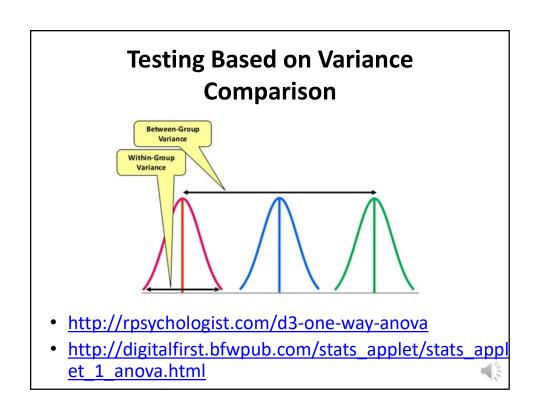
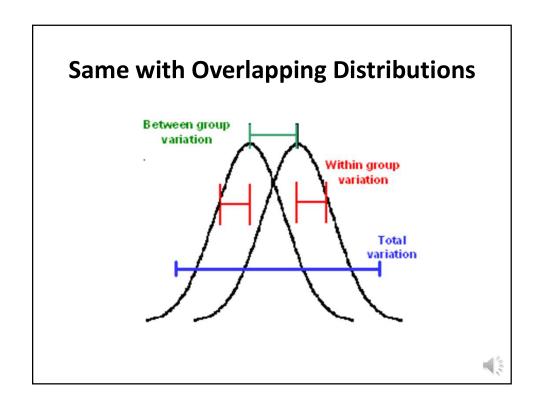

Analysis of Variance




ANOVA M1=M2=M3=M4?

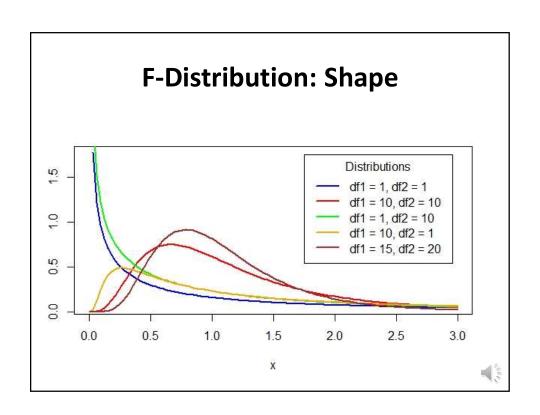


Comparing Multiple Groups: ANOVA

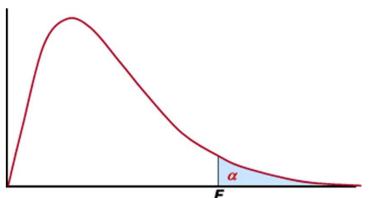
- Want to compare more than 2 independent groups?
- Use analysis of variance (ANOVA)
- Simultaneous examination: do groups differ from one another?
- Focus on one-way ANOVA

F Statistic

- Test statistic: F statistic
- If used for two groups → same result as t-test (for two groups, squaring the t value will give us F statistic)
- Called F-test in honor of Sir Ronald A. Fisher who developed the statistic in the 1920s



Analysis of Variance Table


Source	Sum of Squares (SS)	df	Mean SS	F
Between groups	BSS= $\Sigma (\bar{X}_{\text{group}} - \bar{X}_{\text{grand}})^2$	k-1	BSS/(k-1)	BSS/(k-1) WSS/(N-k)
Within groups	WSS= Σ (X - \bar{X}_{group}) ²	N-k	WSS/(N-k)	
Total	TSS= Σ (X - \overline{X}_{grand}) ²	N-1	TSS/(N-1)	

- Total Mean SS = total variance of X
- BSS + WSS = TSS
- Applet: https://demonstrations.wolfram.com/VisualANOVA/

F-Distribution and Critical Region

- Always non-directional research hypothesis
- Always one-tailed test!

ANOVA Step by Step

- 1. State your null and research hypotheses:
- Null: In the population, the means of <u>all</u> groups are the same.

H0: $\mu_1 = \mu_2 = \mu_3$ [etc. if more groups]

Research: In the population, the mean of <u>at</u>
 <u>least one group</u> differs from the others (always non-directional)

H1: $\mu_1 \neq \mu_2 \neq \mu_3$ [etc. if more groups]

ANOVA Step by Step

- 2. Select the alpha level
- 3. Identify the test statistic: F statistic
- 4. Formula:

$$\mathsf{F} = \frac{\mathsf{MS}_{\mathsf{Between}}}{\mathsf{MS}_{\mathsf{Within}}}$$

MS between = $\Sigma(\bar{X}_{\rm group} - \bar{X}_{\rm grand})^2/(k-1)$ MS within = $\Sigma(X - \bar{X}_{\rm group})^2/(N-k)$ df1=k-1, df2=N-k

ANOVA Step by Step

- 5. Use Table B3 to find the critical value of F: based on three pieces of information: (1) df for numerator = k-1 (where k=number of groups); (2) df for denominator = N-k, (3) our selected alpha level.
- 6. Compare the computed and the critical value.
- 7. State your decision about H0: If your computed value is larger than the critical value \rightarrow reject H0 in favor of H1. If your computed value is smaller than the critical value \rightarrow fail to reject H0.

Example

Suppose three large groups of students were taught statistics using different pedagogical methods. We randomly sampled 4 students from each group and have the following scores on achievement test:

• Method 1: 71, 75, 65, 69

Method 2: 90, 80, 86, 84

• Method 3: 72, 77, 76, 79

We want to know whether these three methods produce significantly different achievement results or not.

We want to use 99% confidence level.

Example: Step by Step

- 1. Our null hypothesis is that the three methods produce the same results; our research hypothesis is that at least one of the methods produces results distinct from others.
- H0: μ_1 = μ_2 = μ_3 H1: $\mu_1 \neq \mu_2 \neq \mu_3$

We use non-directional test (always for ANOVA)

- 2. We choose α = .01 (1-.99=.01).
- 3. We will use F statistic.

Calculating Means

- $\bar{X}_{group1} = (71+75+65+69)/4=70$
- \bar{X}_{group2} =(90+80+86+84)/4=85
- \bar{X}_{group3} =(72+77+76+79)/4=76
- $\bar{X}_{grand} = (70*4+85*4+76*4)/12=77$

Calculations									
Group	х	$ar{X}_{ extsf{group}}$	$ar{X}_{ ext{grand}}$	$\mathbf{X} ext{-}ar{X}_{group}$	$(\mathbf{X} ext{-}ar{X}_{group})^2$	$\mathbf{X} ext{-}ar{X}_{grand}$	$(\mathbf{X} ext{-}ar{X}_{grand})^2$	$ar{X}_{ extsf{group}}$ – $ar{X}_{ extsf{grand}}$	$(ar{X}_{ ext{group}} ext{-}ar{X}_{ ext{grand}})^2$
1	71	70	77	1	1	-6	36	-7	49
1	75	70	77	5	25	-2	4	-7	49
1	65	70	77	-5	25	-12	144	-7	49
1	69	70	77	-1	1	-8	64	-7	49
2	90	85	77	5	25	13	169	8	64
2	80	85	77	-5	25	3	9	8	64
2	86	85	77	1	1	9	81	8	64
2	84	85	77	-1	1	7	49	8	64
3	72	76	77	-4	16	-5	25	-1	1
3	77	76	77	1	1	0	0	-1	1
3	76	76	77	0	0	-1	1	-1	1
3	79	76	77	3	9	2	4	-1	1
Σ				0	130	0	586	0	456

ANOVA Table

- $df_{between} = k-1 = 3-1 = 2$
- $df_{within} = 12-3 = 9$
- $df_{total} = 12-1 = 11$

Source	SS	df	Mean SS	F
Between groups	456	2	228	15.8
Within groups	130	9	14.44	
Total	586	11		

• Check if math is ok: 456 + 130 = 586; 2+9=11

Example Step by Step

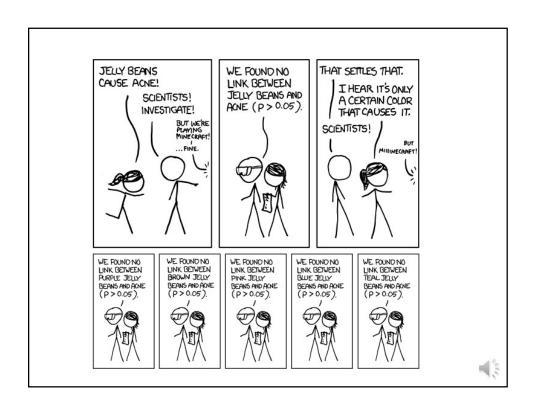
- 4. Computed test statistic F = 15.8
- 5. Critical value: Use table B3: df for numerator=2, df for denominator =9 \rightarrow critical value = 8.02
- 6. Test statistic > critical value (15.8>8.02)
- 7. We reject the null hypothesis and conclude that there are statistically significant differences among these means.

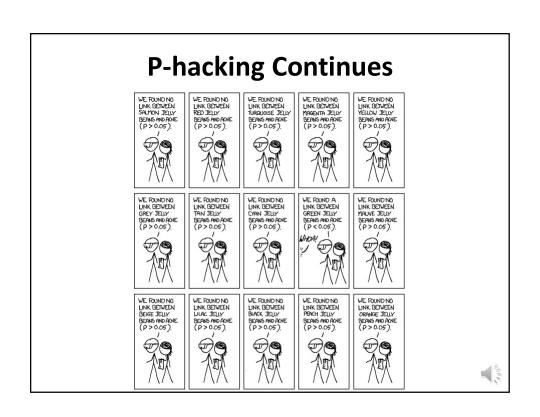
Conclusion: at least one of these three methods of teaching produces significantly different results from the others.

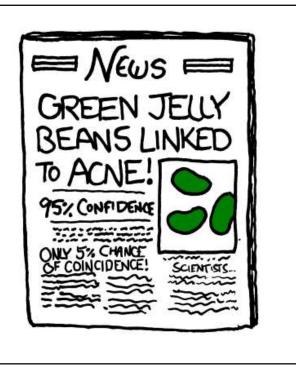
• We can also report our finding as F(2, 9) = 15.8, p<.01

Post-Hoc Comparisons (follow-up pairwise tests)

- Interested in pinpointing which groups specifically differ from each other?
- Can make comparisons using two group methods (t-tests for independent samples)
- This is called post-hoc analyses




Inflated Alpha


- Making so many comparisons → risk of Type I error (alpha) is inflated
- E.g., 3 groups → could compare group 1 to group 2, group 2 to group 3, and group 1 to group 3 → 3 comparisons in total
- Need to adjust our test to the total number of comparisons

Post-Hoc Comparisons: Bonferroni Correction

- Use an adjustment called Bonferroni correction
- To adjust, we have two choices:
 - 1. Multiply p-values by the number of comparisons (Stata does that automatically)
 - 2. Divide alpha by the number of comparisons
- So either p should be larger or alpha should be smaller → more difficult to find that p < α
- To calculate the number of comparisons for any number of groups: k*(k-1)/2
- 4 groups: $k = 4 \rightarrow 4*(4-1)/2 = 6$ comparisons

Age at First Childbirth and Social Class

- Does the average age when people have their first child differ by social class? (Want 99% confidence)
- H0: There are no social class differences in average age when people have their first child.
- H1: Average age when people have their first child varies by social class.
- Four social class groups, therefore:

 $H0: \mu_1 = \mu_2 = \mu_3 = \mu_4$ $H1: \mu_1 \neq \mu_2 \neq \mu_3 \neq \mu_4$

ANOVA in Stata

. oneway agekdbrn class, means standard obs bonferroni

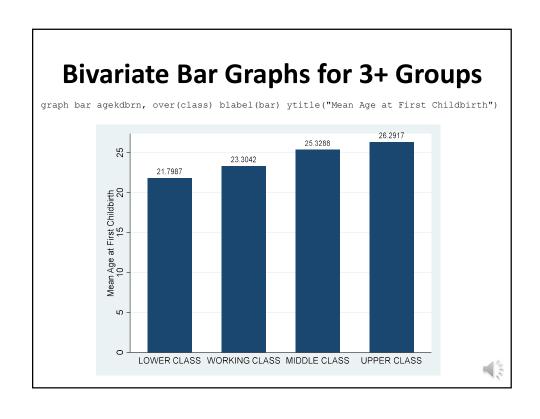
SUBJECTIVE					
CLASS	Summary of R	R'S AGE WHEN	1ST CHILD		
IDENTIFICAT		BORN			
•	Mean				
LOWER CLA	21.798742	4.4718244	159		
WORKING C	23.304207	5.2547438	618		
MIDDLE CL	25.328836	5.822962	593		
UPPER CLA	26.291667	6.1642702	48		
+-					
Total	24.083216	5.5985544	1418		
	Ana	lysis of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups				26.44	(0.0000)
Within groups	42055.1	624 1414	29.7419819		
Total	44414.1	805 1417	31 3438112		
iocai	44414.1	.005 1417	J1.J4J011Z		

Bartlett's test for equal variances: chi2(3) = 19.3962 Prob>chi2 = 0.000

Posthoc Comparisons Portion (Bonferroni)

Comparison of R'S AGE WHEN 1ST CHILD BORN by SUBJECTIVE CLASS IDENTIFICATION $% \left(1\right) =\left(1\right) \left(1$

(B			


Row Mean-			
Col Mean	LOWER CL	WORKING	MIDDLE C
WORKING	1.50546		
1	0.012		
1			
MIDDLE C	3.53009	2.02463	
1	0.000	0.000	
1			
UPPER CL	4.49292	2.98746	.96283
1	0.000	0.002	1.000

Conclusions

- We reject the null hypothesis of no social class differences in average age at first birth
- We are 99% confident that there are differences by class
- 4 out of 6 pairs of groups are significantly different (p<.01) from each other: higher class status → later childbirth
- But two exceptions:
 - lower and working class people seem to have their first children at similar ages
 - middle class and upper class people seem to have their first children at similar ages

